
Object-Oriented Programming: 
Message Passing & Properties of OOP

Key Concepts and Principles



Quick Recap of OOP

•Classes & Objects: Core components of OOP

•Encapsulation: Bundling of data with methods that operate on the 

data

•Abstraction: Hiding complex implementation details, showing only 

essentials

•Inheritance: Mechanism for code reuse

•Polymorphism: Same interface, different implementations 



Message Passing in OOP

•Definition: Communication between objects.

•Mechanism: Objects interact by sending and receiving 

messages (method calls).

•Analogy: Similar to real-world messaging systems—e.g., 

sending a text.

•Purpose: Promotes loose coupling; objects don’t need to know 

each other’s details but must agree on message protocols. 

•Message passing allows for flexible and modular code design



How Message Passing Works

•Sender & Receiver: Object A (Sender) sends a message (method 

call) to Object B (Receiver).

•Method Invocation: Message corresponds to invoking a method in 

the receiver.

•Parameters: Optionally, data (arguments) is sent along with the 

message.

•Response: The receiver may return data (optional, based on method 

type).



Importance of Message Passing

• Decoupling: Objects interact without needing to know internal 
details.

• Modularity: Code becomes easier to manage, update, and 
scale.

• Reusability: Components can be reused in different contexts 
without modification.

• Links to real-world systems where decoupled 
communication is crucial (e.g., microservices).



Object Relationships in OOP

•Objects: Instances of classes that interact in various ways to fulfill the 

requirements of the system.

•Relationship Types:

•Association

•Aggregation

•Composition

•Relationships between objects can vary based on how they collaborate 

and depend on each other. 



Class-Object Association in OOP

•Definition: A relationship where objects are linked 

but maintain their independence.

•Two-way communication: Both classes are aware 

of each other.

•Example: A Teacher class is associated with a Student

class; both exist independently but are linked via 

association.

•Types:

•One-to-One

•One-to-Many

•Many-to-Many

•Association defines a more general relationship 

between objects where no ownership is implied. 



Aggregation: Whole-Part Relationship

•Definition: A specialized form of association 

representing a "whole-part" relationship.

•Loose Coupling: The part (child) can exist 

independently of the whole (parent).Example: 

A Team is an aggregation of Players; players 

can exist without being part of the team.

•Aggregation expresses relationships where 

components can exist independently but are 

still connected to the whole.



Composition: Strong Ownership

•Definition: A form of association where the 

part (child) cannot exist independently of 

the whole (parent).

•Strong Coupling: If the whole is destroyed, 

so are the parts.

•Example: A House is composed of Rooms. 

Without the house, the rooms cannot exist.

•In composition, the lifespan of the part 

depends on the whole, reflecting a stronger 

relationship than aggregation.



Understanding Metaclasses in OOP

•Definition: A metaclass is a class that defines the behavior and structure of 

other classes.

•Purpose: Controls the creation and modification of classes.

•Example: In Python, metaclasses allow customization of class creation (e.g., 

dynamically adding methods).

•Metaclasses provide advanced functionality and are used to influence the 

structure and behavior of classes at runtime.


